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NASA TT F-11,690 

FLOW STRUCTURE BEYOND A POORLY S T R E A M L I N E D  BODY 

L .  I .  l l i zarova  

ABSTRACT. T h e  r e s u l t s  a r e  discussed from an experimental  
i nves t iga t ion  of t h e  c h a r a c t e r i s t i c s  of average v e l o c i t i e s  
and pressures ,  as  w e l l  a s  t h e  pu lsa t ion  pressure  i n  t h e  wake 
beyond a cone and a s t e p  i n  a channel w i t h  two diameters .  
I n  p a r t i c u l a r ,  a d e t a i l e d  ana lys i s  is made of t h e  zone of 
c i r c u l a t i o n  flow immediately beyond t h e  f l a t  bottom of the 
cone. T h e  averaged bottom pressure and its pu l sa t ions  were 
measured, a s  w e l l  a s  t h e  veloci ty  p r o f i l e s  and pressure  i n  
t h e  wake; t h e  boundaries of the zone of c i r c u l a t i o n  flow and 
zone of re turn  flow were determined. 

I n  r ecen t  years ,  t h e  a t t e n t i o n  of  researchers  has been a t t r a c t e d  by t h e  /El 
study o f  t h e  c h a r a c t e r i s t i c s  o f  t h e  discontinuous flow i n  t h e  wake beyond a 
poorly s t reaml ined  body placed i n  an unlimited flow o r  i n  a channel [ l -71 .  
problem is of  i n t e r e s t  both i n  p r i n c i p l e  and d i r e c t l y  f o r  p r a c t i c e ,  s i n c e  t h e  
a r e a  of r e t u r n  flow has  an e s s e n t i a l  inf luence on t h e  e f f e c t i v e n e s s  of var ious  . 
t e c h n i c a l  devices .  
c h a r a c t e r i s t i c s  of t h e  averaged flow, while t he  l a s t  two works ([6-7'1) analyze 
the  n a t u r e  of t h e  turbulence  i n  a f l o w  beyond a s t e p  i n  a f l a t  channel. 

This 

Most of t he  works ju s t  c i t e d  a r e  dedica ted  t o  a s tudy  of t he  

In  t h e  p re sen t  work, we set  ourselves t h e  task of  accumulating experimental  
d a t a  on t h e  c h a r a c t e r i s t i c s  of  t h e  averaged and p u l s a t i o n  flow i n  t h e  wake 
beyond a cone, as wel l  a s  beyond a s t e p  i n  a f l a t  channel with var ious  degrees 
of blocking.  The flow c h a r a c t e r i s t i c s  i n  t h e  wake beyond t h e  cone a r e  conpared 

I t o  t h e  corresponding c h a r a c t e r i s t i c s  o f  a s t reaml ined  r o t a t i o n  body [8] .  

1 .  Object of Inves t iga t ion ,  Experimental Equipment 

The axisymmetrical wake beyond a poorly s t reamlined body was produced by 
blowing a s t ream p a s t  a cone i n  c losed  type wind tunnels  wi th  an open t e s t  
s e c t i o n  wi th  nozzle  diameters  of D = 440 and 2200 mm. The diameter  of t h e  
bottom s e c t i o n  of t he  cone d = 100 mm, i t s  he igh t  i s  120 mm and t h e  peak angle  
i s  45'. The measurement of t h e  mean v e l o c i t i e s  and p res su res ,  as wel l  as t h e  
p u l s a t i o n  p res su re  on t h e  bottom c ross  sec t ion  were performed i n  t h e  small wind 
tunnel .  The cone was fas tened  i n  p l a c e  by a ho r i zon ta l  ho lde r .  
of t h e  v e l o c i t y  p u l s a t i o n s  i n  var ious  cross sec t ions  of  t h e  wake beyond t h e  cone 
were performed i n  t h e  l a r g e  diameter  tunnel. In  t h i s  case ,  t h e  cone was 
supported on e i g h t  t ens ion  l i n e s ,  and t h e  p lane  of  measurements contained no 
l i n e s .  

Inves t iga t ion  

* Numbers i n  the margin i n d i c a t e  pagination i n  t h e  fore ign  t e x t .  
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In o r d e r  t o  measure t h e  average and p u l s a t i o n  p res su re  a t  t h e  bottom c ross  
s e c t i o n  of  t h e  cone, two removable covers were used. The f irst  cover contained 
19 drainage ape r tu re s ,  one each 5 mm, connected through t h e  support  by v i n y l  
c h l o r i d e  tubes t o  a mul t ip l e  manometer. The second cover contained t h r e e  
induct ion p res su re  t ransducers ,  one located i n  t h e  c e n t e r  and t h e  o t h e r  two 
along t h e  v e r t i c a l  diameter a t  d i s t ances  of 0.7 times the  r a d i u s  of t h e  bottom 
c ross  s e c t i o n ,  symmetrically r e l a t i v e  t o  t h e  cen te r .  Each t ransducer  body was 
10 mm i n  diameter,  and t h e  diameter o f  the r e c e i v e r  a p e r t u r e  was 0.5 mm. 
s i g n a l  from each t r ansduce r  was f e d  t o  an a m p l i f i e r  and subsequently t o  t h e  
loops of an osc i l l og raph .  

The 

The averaged v e l o c i t i e s  and pressures  i n  t h e  wake were measured through t h e  
v e r t i c a l  c r o s s  s e c t i o n  using a three- tube f i t t i n g .  I n  [ 9 ] ,  it is  s t a t e d  t h a t  

r e s u l t s .  I n  t h i s  work, we use  t h e  absolute method of measurement. Using t h e  
measured p r e s s u r e  drops i n  t h e  ou te r  tubes and t h e  c e n t r a l  t ube  of  t h e  t h r e e -  
tube f i t t i n g ,  w e  c a l c u l a t e d  t h e  magnitudes and d i r e c t i o n s  of v e l o c i t i e s  a t  each 
p o i n t ,  t h e  t o t a l  and a l s o  the  s t a t i c  pressure,  equal t o  t h e  d i f f e r e n c e  between 
t h e  t o t a l  p r e s s u r e  and t h e  dynamic pressure.  

measurements o f  t h e  flow by t h e  zero and abso lu te  methods give i d e n t i c a l  197 

< 

I n  o r d e r  t o  measure t h e  i n t e n s i t y  of t h e  turbulence,  as wel l  as t h e  average 
v e l o c i t i e s ,  we used a disa eZektronik thermoanemometer, t h e  s i n g l e  th read  t r a n s -  
ducer of  which had a diameter of 10 P and a length of  1.4 mm. Measurement o f  
t h e  v e l o c i t y  p u l s a t i o n s  i n  t h e  wake beyond t h e  s t reamlined body, which had a 
middle c r o s s  s e c t i o n a l  diameter o f  60 mm and a length o f  about 400 mm, were 
performed i n  t h e  small tube with t h e  model supported by s i x  t ens ion  members. 

I n v e s t i g a t i o n  of  t he  discontinuous flow r e s u l t i n g  from t h e  sudden expansion 
beyond the  s t e p  i n  a closed channel was performed us ing  a s p e c i a l  i n s t a l l a t i o n ,  
cons i s t ing  of a s e t t l i n g  chamber t o  which a wooden, c losed valve was connected. 
The diagram of  t h e  channels is presented below on Figure 13, t h e i r  geometrical  
parameters i n  Table 1. A tube 100 mm long connected t h e  channel t o  t h e  input  
c o l l e c t o r .  The device operated i n  t h e  iildratight mode. 

TABLE 1 
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Two models had constant  he ight  H of narrow i n t a k e  s e c t i o n  ( tube ) ,  but  
d i f f e r e n t  s t e p  he igh t s  h. 
v a r i a b l e  he igh t  of i n t ake  s e c t i o n ,  which was achieved by moving t h e  wall 
oppos i te  t o  t h e  wall with t h e  s t e p .  
t h e  r eve r se  flow zone would i n  a l l  cases  be contained i n  t h e  channel. The width 
of t he  channels was 800 mm. 
metry of  t h e  channel 400 mm from t h e  s i d e  walls. 
measured using t h e  three- tube  f i t t i n g ,  P i to t - -P rand t l  tubes ,  as  wel l  as t h e  
thermoanemometer, f o r  which sea led  s l i t s  were made i n  t h e  channel walls. 
Drainage ape r tu re s  and n ipp le s  were provided i n  t h e  wa l l s  and on t h e  s t e p  f o r  
t h e  measurement of s t a t i c  pressure .  The p res su re  drops were measured us ing  a 
mul t ip l e  naometer. 

The o t h e r  th ree  models had cons tan t  s t e p  he igh t  and 

The models were made r a t h e r  long s o  t h a t  

Measurements were performed i n  the  p lane  of sym- 
The averaged v e l o c i t i e s  were 

To allow v i s u a l  i n v e s t i g a t i o n  of t he  flow p i c t u r e ,  t h e  s i d e  wall was made 
of p l e x i g l a s s  i n  two of t h e  models. 
bundles of  white  s i l k  threads  suspended on t h i n  wires  across  t h e  channel,  as 
wel l  as  by co lo r ing  t h e  i n t e r n a l  s u r f a c e  of t h e  model black.  
were photographed through t h e  t ransparent  w a l l  of  t h e  iiiodel. 

Visua l iza t ion  was achieved us ing  small  

The s i l k  th reads  

2.  Experimental Resul ts  

Figure 1 shows t h e  p r o f i l e s  of  averaged v e l o c i t y  u ( r )  and excess t o t a l  
p re s su re  AP 0 - - Po - P,, produced us ing  the three- tube  f i t t i n g  with measurements 

beyond the  cone. Curve 1 corresponds t o  

t h e  s u r f a c e  of zero long i tud ina l  ve loc i ty ;  curve 2 shows t h e  s u r f a c e  d e l i n e a t i n g  
t h e  closed c i r c u l a t i o n  zone. 

r2 
t h e  cond i t ion  I u r d r  = 0 using the  measured p r o f i l e s  of t h e  long i tud ina l  

0 
component of  averaged ve loc i ty .  Analysis of  Figure 1 shows t h a t  an inc rease  i n  
t h e  flow v e l o c i t y  occurs near  su r face  2. This deformation of t h e  v e l o c i t y  f i e l d  
was a l s o  noted during flow around a poorly s t reaml ined  body i n  a c losed  channel 
[ 3 ] .  
approximately two o rd ina te s  of  su r face  2 .  

1% 
The flow v e l o c i t y  was u, = 28.8 m/sec. 

I t s  ordinates  r2 were ca l cu la t ed  on t h e  b a s i s  of 

The deformation of t h e  v e l o c i t y  f i e l d  ends a t  a d i s t ance  equal  t o  

. Figure 2 shows t h e  d i s t r i b u t i o n  o f  the p re s su re  c o e f f i c i e n t  = 

= (p - p=)/+u: i n  t h e  same cross  sec t ions  o f  t he  wake. As we can s e e  from 

t h e s e  d a t a ,  p r e a c h e s  values  of 0.55-0.60 on the  ax i s  of t h e  wake and i n  t h e  
a r e a  of zero long i tud ina l  ve loc i ty .  The pressure  p r o f i l e  a l s o  has t h e  same 
approximate conf igura t ion  i n  t h e  case  of  reverse  f l u i d  flows when a s t ream 
propagates  i n t o  an oncoming flow [ 4 ] .  

The r e s u l t s  o f  measurement with t h e  three- tube  f i t t i n g  i n  t h e  a r e a  of low 
va lues  of are less p r e c i s e ,  s i n c e  he re  the s t a t i c  p re s su re  i s  determined as 
t h e  small d i f f e r e n c e  of two l a rge  q u a n t i t i e s .  
a r e a  of t h e  end of t h e  vor tex  zone, t h e  r a r e f a c t i o n  i s  decreased and becomes 
more even across  t h e  c ros s  sec t ion .  

We can note ,  however, t h a t  i n  t h e  

I t  i s  shown i n  [8] t h a t  i n  t h e  wake beyond 
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a r o t a t i o n  body o f  s t reamlined form, the re  i s  no r a r e f a c t i o n  on t h e  a x i s  of 
symmetry. Immediately beyond - t he  r o t a t i o n  body, a s l i g h t  p re s su re  g rad ien t  / lo1  
occurs,  t he  maximum value of p on the  axis being +0.01. 

Figure 1 

Measurement o f  t h e  s t a t i c  p res su re  a t  t h e  bottom c ross  s e c t i o n  o f  t h e  
showed t h a t  a t  oncoming flow v e l o c i t i e s  u, = 16.4-48.8 m/sec, t h e  p re s su re  

- 

cone 

c o e f f i c i e n t  is p r a c t i c a l l y  constant  along t h e  r a d i u s ,  equal t o  0.30. Measure- 
ments of t h e  p u l s a t i o n  p res su re  on t h e  bottom c ross  s e c t i o n  of  t h e  cone showed 
t h a t  t h e  amplitude of t h e  p re s su re  pulsat ions a t  t h e  c e n t e r  i s  only one h a l f  t h e  

amplitude n e a r  t h e  edge of  t h e  bottom cross s e c t i o n ,  amounting t o  pf/(p/2)u,  = 
= 0.04 a t  u, = 28.8 m/sec. 

2 

4 



Figure 2 

Figure 3 shows t h e  p r o f i l e s  of  averaged v e l o c i t i e s  (black po in t s )  and 
/ =- 

i n t e n s i t i e s  of  turbulence E =  1 u ” / u  (white po in t s )  i n  t h e  wake beoynd 
t h e  cone a t  u, = 28.8 m/sec. The averaged v e l o c i t i e s  he re  were a l s o  measured 

us ing  t h e  thermoanemometer. The measurements were l i m i t e d  t o  t h e  area of  t h e  
wake within which t h e  f l u i d  i n  t h e  wake moves only i n  t h e  primary d i r e c t i o n .  

The r e s u l t s  of  t h e  experiment allowed us t o  determine t h e  length of t h e  
area of  r e v e r s e  flow i n  t h e  wake beyond the cone: 2 % 170 mm o r  2 % 3 . 4  ro, 
where r i s  t h e  r a d i u s  o f  t h e  bottom cross s e c t i o n  o f  t h e  cone. Precise 

determinat ion of t h e  length of  t h e  area of r eve r se  flow i s  r a t h e r  d i f f i c u l t .  
The i n t e n s i t y  of  t h e  turbulence i n  t h e  area of  t h e  wake adjacent  t o  t h e  s e c t o r  
o f  c losed  c i r c u l a t i o n  flow is  q u i t e  g rea t  (Figures 3 and 4) and i t s  a t t e n u a t i o n  
i n  t h e  t r a n s v e r s e  d i r e c t i o n  occurs a t  a d i s t ance  exceeding t h e  thickness  of  t h e  
wake as determined from t h e  averaged v e l o c i t i e s  by a f a c t o r  of more than 2. 
Figure 4 shows f o r  comparison t h e  p ro f i l e s  of  turbulence i n t e n s i t i e s  i n  t h e  wake 
beyond a body of  r o t a t i o n .  

0 

/ l o 3  - 
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t i o n  

. .  

Figure 5 

Figure 4 

Figure 5 shows t h e  d i s t r i b u t i o n  of  v e l o c i t i e s  and turbulence i n t e n s i t i e s  on 
t h e  a x i s  of  t h e  wake beyond t h e  cone and beyond t h e  body o f  r o t a t i o n .  
becomes obvious t h a t  i n  t h e  wake beyond the cone, t h e  inc rease  i n  mean v e l o c i t y  
on t h e  flow a x i s  occurs more r a p i d l y  than i n  t h e  wake beyond t h e  body of r o t a -  
t i o n ,  which i s  a resul t  of t h e  h ighe r  level  of turbulence i n  t h e  former case. 

I t  

Figures 6-8 and 9-11 show t h e  measured i n t e n s i t i e s  o f  pu l sa t ions  i n  t h e  
l o n g i t u d i n a l  v e l o c i t y  component 
r o t a t i o n  i n  t h e  form of t h e  following dependences: 

i n  t h e  wake beyond t h e  cone and 

I where 6 i s  determined from the  p r o f i l e  d e f e c t  i n  t h e  averaged 
1/2  

body o f  

I 

ve loc i ty .  
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Figure 7 
Thus, i n  t h e  axisymmetrical wake beyond a poorly s t reaml ined  body, we can 

no te  t h r e e  c h a r a c t e r i s t i c  s ec to r s :  t h e  f i r s t  s e c t o r ,  t h e  a r e a  of  r eve r se  f l u i d  
flow. In  t h e  first s e c t o r ,  a considerable  dev ia t ion  from i s o b a r i c  flow i s  
noted,  and a high l e v e l  of tu rbulence  i s  generated.  The second and t h i r d  
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s e c t o r s ,  t h e  t r a n s i e n t  and: primary sectors, encompass t h e  area of primary 
d i r e c t i o n  flow i n  t h e  medium. I n  t h e  t r ans i en t  s e c t o r ,  t h e  l e v e l  of tu rbulence  

i s  high,  and t h e  grad ien t  of ;I2 i s  considerable with respec t  t o  x. 
r e g u l a r i t y  of  development of the  wake along i t s  length ,  c h a r a c t e r i s t i c  f o r  
g r e a t e r  d i s t ances  from t h e  body, i s  disrupted.  

Here, t h e  

The c h a r a c t e r i s t i c  p rope r t i e s  of the main s e c t o r  are i s o b a r i c  and un ive r sa l  

v e l o c i t y  p r o f i l e s ,  i n s i g n i f i c a n t  gradient  GI2 with r e spec t  t o  x;  these  proper- 
t i e s  are well known. 

As fol lows from Figure 1, even i n  the main s e c t o r  of t he  wake beyond t h e  
cone t h e  v e l o c i t y  p r o f i l e  d i f f e r s  considerably from t h e  ordinary,  un ive r sa l  

r o t a t i o n  [l, 81. This conclusion agrees  s a t i s f a c t o r i l y  with the  r e s u l t s  of t h e  
experimental  i nves t iga t ions  of Reichardt [ lo ] .  
measured i n  t h e  wake beyond a cone and a d i s k  are shown on Figure 1 2 .  

/ l o5  "stream" p r o f i l e  c h a r a c t e r i s t i c  f o r  t h e  wake beyond a s t reamlined body of - 
The v e l o c i t y  p r o f i l e  which he 

I 

_- 
Cone- 
X -- - 1.70 

2.20 
2.70 
3.70 
5,70 
6,75 
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i 

i 
1 

Y 
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Inves t iga t ion  of t h e  discontinuous flow beyond t h e  s t e p  i n  a c losed channel 
(Figure 13) showed t h e  following. 
s e c t i o n  
approximately four  times t h e  s t e p  he igh t ,  an inc rease  i n  t h e  p o t e n t i a l  flow 
v e l o c i t y  of approximately 5% i n  comparison t o  t h e  v e l o c i t y  i n  t h e  in t ake  c ross  

With a r e l a t i v e  he ight  o f  t h e  in t ake  c ros s  
= H/h, equal t o  0 .4  and 0.8, over t h e  length of a channel equal t o  
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Figure 9 

The l e n g t h  of  t h e  s e c t o r  of reversed flow 

s e c t i o n  i s  noted (Figure 14).  
Where E = 1.62 and 2.80, t h i s  
i nc rease  i n  v e l o c i t y  is 
p r a c t i c a l l y  no t  observed 
(Figure 15) .  I t  should be  

/ l o 8  noted t h a t  t h e  r e s u l t s  of - 
. measurements using t h e  P i t o t -  

P rand t l  t ubes ,  t h e  th ree - tube  
f i t t i n g  and t h e  thermoanemo- 
meter correspond over  most of  
t h e  v e l o c i t y  p r o f i l e .  The 
divergence between t h e  
i n d i c a t i o n s  of t h e s e  i n s t r u -  
ments occurs near  t h e  l i n e  of 
zero long i tud ina l  v e l o c i t i e s .  
Figure 14 shows t h e  v e l o c i t y  
p r o f i l e s  measured by t h e  
P i t o t - P r a n d t l  tubes,  Figure 15 
shows t h o s e  measured by t h e  
thermoanemometer. 

beyond t h e  s t e p ,  as t h e  d i r e c t  - 
measurements showed, and a l s o  as was shown by photography o f  t h e  s i l k  t h r e a d s ,  
depends on two,parameters:  he igh t  of t h e  i n t a k e  c ros s  s e c t i o n  and h e i g h t  o f  t h e  
s t e p .  With constant  he igh t  of t h e  input  c ros s  s e c t i o n ,  t h e  length o f  t h e  
r e v e r s e  flow area 2 X (4.5-6.5) h. 
t h e  input  height  E causes t h e  length o f  the r eve r se  flow a r e a  t o  decrease.  The 
graph of  t h i s  dependence is  shown on Figure 16. 
flow i n  t h e  r eve r se  flow a r e a  corresponds t o  a flow i n  t h e  wake beyond a poorly 
s t reamlined body i n  an i n f i n i t e  flow. 

With cons t an t  height  of t h e  s t e p ,  i nc reas ing  

With l a r g e  va lues  of  E, t h e  

The photographs on Figure 17 show t h e  flow p i c t u r e  a t  = 2.80 and 0.62. 

The p u l s a t i o n s  
We see h e r e  t h a t . i n  a narrow channel even t h e  th reads  loca ted  o u t s i d e  t h e  
area of c i r c u l a t i o n  flow are sub jec t  t o  broad o s c i l l a t i o n s .  
a r i s i n g  i n  t h e  c i r c u l a t i o n  zone propagate i n t o  t h e  e x t e r n a l  flow area.  In  a 
broad channel,  t h e  a c t i o n  on t h e  ex te rna l  flow i s  no t  so  s i g n i f i c a n t .  The 
p r o f i l e s  o f  turbulence i n t e n s i t y  shown on Figure 15 i n d i c a t e  t h a t  j u s t  as i n  
t h e  case of  t h e  wake beyond a cone, t u r b u l i z a t i o n  of t h e  e x t e r n a l  flow occurs,  
being damped only fa r  beyond t h e  l i m i t s  o f  t h e  boundary l a y e r .  

A change i n  input  c ros s  s e c t i o n  height i n f luences  t h e  d i s t r i b u t i o n  o f  

The measurements o f  s t a t i c  p res su re  on 
p r e s s u r e  on both walls of t h e  channel and a t  t h e  same time has p r a c t i c a l l y  no 
in f luence  on t h e  p re s su re  a t  t h e  s t e p .  
t h e  walls and on t h e  s t e p  which w e  performed were designed t o  show t h e  

d i s t r i b u t i o n  of t h e  p re s su re  c o e f f i c i e n t  c 

t h e  s t a t i c  p res su re  a t  t h e  p o i n t  i n  question; pin and u:n are t h e  p r e s s u r e  and 

v e l o c i t y  i n  t h e  narrow c ross  s e c t i o n  of t he  channel 50 mm from t h e  s t e p .  

2 
= (p - p i n ) / ( l / 2 ) ~ u i n ,  where p i s  P 

/110 - 
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Figure 16 
Figure 17 

Figure 18 shows t h e  r e s u l t s  of measurement of c as a func t ion  of r e l a t i v e  
P 

d i s t a n c e  x = x/h from t h e  beginning o f  the expansion f o r  both walls with a 
v e l o c i t y  i n  t h e  inpu t  c ros s  s e c t i o n  uin = 32 m/sec. 
he igh t  of  t h e  inpu t  c r o s s  s e c t i o n ,  t h e  d i s t r i b u t i o n  of t h e  p re s su re  c o e f f i c i e n t  
on t h e  walls becomes d i f f e r e n t .  The d i s t r i b u t i o n  of t h e  p re s su re  c o e f f i c i e n t  on 
t h e  s t e p  i s  given on t h e s e  same graphs by t h e  curves with x < 0. 
from t h i s  t h a t  c 

With inc reas ing  r e l a t i v e  

I t  fol lows 
on t h e  s t e p  depends l i t t l e  on the  height  of t h e  input c r o s s  

s e c t i o n  Ti. P 
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